Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data

نویسندگان

  • Shivapratap Gopakumar
  • Truyen Tran
  • Wei Luo
  • Dinh Phung
  • Svetha Venkatesh
چکیده

OBJECTIVE Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. METHODS We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. RESULTS Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. CONCLUSIONS In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

بررسی موانع اجرای آموزش بیمار از دیدگاه پرستاران بالینی شاغل در بیمارستانهای وابسته به دانشگاه علوم پزشکی ایران(1372)

  This study was a field study for determining views of clinical nurses about the problems of patient teaching at three levels of patient teaching process.   I This study had five main aims: first, to determine demographic characteristics of clinical nurses, second, third and fourth, to determine their views about the problems of patient teaching at each level of patient teaching process, fifth...

متن کامل

The Clinical Rounds on Patients’ Bedside in Internal Ward from Patients’ Viewpoints

  Introduction: Patients my feel uncomfortable toward discussing their diseases on their bedsides which is usually done by faculty members and students during clinical rounds. This study aimed to determine the viewpoints of internal ward patients about clinical rounds on their bedside in Alzahra hospital of Isfahan University of Medical Sciences.   Methods: This descriptive study was performed ...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Forecasting Average Daily Temperature in the Khorasan Razavi Province

In this research, applied synoptic model for determining the average daily temperature and its relationship with the Geopotential Height in middle level (500 HPa). Therefore, two database were used: database of atmospheric circulations, includes the data of geopotential height at 500 HPa and its data were extracted from the NCEP/DOE(US National Oceanic and Atmospheric Administration) in hours 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016